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An iteration method has been developed for determining crack growth and fracture
resistance curves (J-R curves) of nuclear structural steels from the load versus load-line
displacement record only. In this method, the hardening curve, the load versus
displacement curve at a given crack length, is assumed to be a power-law function, where
the exponent varies with the crack length. The exponent is determined by an iterative
calculation method with the assumption that the exponent varies linearly with the load-line
displacement. The proposed method was applied to the static J-R tests using compact
tension (CT) specimens, a three-point bend (TPB) specimen, and a cracked round bar (CRB)
specimen as well as it was applied to the quasi-dynamic J-R tests using CT specimens. The
J-R curves determined by the proposed method were compared with those obtained by the
conventional testing methodologies. The results showed that the J-R curves could be
determined directly by the proposed iteration method with sufficient accuracy in the
specimens from SA508 and SA516 pressure vessel steels and their welds and SA312
stainless steel. © 7999 Kluwer Academic Publishers

1. Introduction independent of the crack growth history and can be
Since theJ-integral has been regarded as the most imédefined by a definite function of load line displacement
portant parameter for characterizing the elastic-plasti@and crack length. The crack length can be expressed as
fracture resistance of structural materials, significang functional of the key curve function, its partial deriva-
efforts have been devoted to develop more simplifiedives, and load-displacement data. For a given material,
methodologies of determining-integral versus crack a unique ‘key curve’ is assumed to exist, and the curve
extension curveJ-R curve) [1-21]. In the]-R frac-  function is obtained by multi-specimen testing or com-
ture testing the crack length measurement is the moguter calculation [2].
cumbersome procedure and needs a high degree of ac-The normalization method was developed based on
curacy to obtain a correct-R curve. The most suc- the similar concept of the key curve method. However,
cessful experimental methods using a single specimethis method uses individual normalized curves for each
are the elastic unloading compliance method and potertest itself rather than using a universal key curve for the
tial drop method [22, 23]. In static fracture testing theygiven material. One important point of this method is
are now used routinely in many laboratories. Howeverthat the separation of variables, crack length and dis-
the unloading compliance method can not be applied tplacement, is applied to the expression for load. Thus
the dynamic loading conditions because the unloadingthe normalized load is given as a function of displace-
reloading cycles to obtain the elastic compliance need ament only. The power-law function [10-12] or three
guasi-static loading condition. Also, the potential dropparameter function [13-15], so-called LMN function,
method requires much sophisticated equipment suchas been frequently used as the normalization function
as a high current power supplier and a high-speed dat@rm.
acquisition system, and there is a difficulty in determin-  In the load ratio method, a reference hardening curve
ing the crack growth initiation point in dynamic fracture (aload versus displacement curve without crack exten-
testing. sion) is needed to obtain the amount of crack exten-
To eliminate these limitations in the experimentalsion [16-18]. It is assumed that at a given total dis-
measurement of crack length, several direct methodplacement the same plastic displacementis assumed for
have been attempted to obtain tleR curve from the reference-hardening curve and experimental load
the load versus displacement record only without adversus displacement curve. Then the elastic unloading
ditional equipment. The most important approachesompliance is determined for each curve, and therefore
are the key curve method [2-5], normalization methodhe crack length can be calculated using the relation-
[6-15], and load ratio method [16—18]. The key curveship between the elastic unloading compliance and the
method is based on the assumption that the load israck length.
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In the previous direct methods, the final result de- ]
pends on how to determine the required curves; suc Hardening curves
as the key curve, normalization function, reference- for non-growing cracks
hardening curve. To obtain more accurate curves, man (P,vi
modified methods have been suggested and succes
fully applied to various materials [3, 14, 15, 17, 18].
We tried to develop an alternate direct method fordeter . | """
mining J- R curves from load versus displacement data®
This paper presents the new direct method (we call i‘§
‘iteration method’) which can be applied to various =
types of specimen and to any loading rate. For a givel
crack length, the hardening curve is expressed by .
power-law function of total displacement. Changing the
constants in the power-law function approximates the
variation of hardening curve with the crack growth. The
exponent of the hardening curve is expressed as aline:
function of displacement and is determined by iterative
calculations. The other constants are directly obtainer. Displacenment (v)
from the experimental load versus displacement dat
As a result, the iteration method can be applied to a
specimen type as long as tleintegral is formulated
for the specimen. For each case, the amounts of crack
growth between data points are calculated based onthte AU;/Aa. Then the amount of crack extension,
calculated power-law hardening curves, and then thé\a (=a; .1 — &), is approximated by
J-R curve is determined. This paper includes the ap-

Experimental P-v record

for growing crack
AUi T ABJiAai

t’s}figure 1 Schematic of experimental load versus displacement curve and
n¥1ardening curves.

plication results for CT specimen cases including static Aa = U((1-R) @)
tests and quasi-dynamic tests and the results for the B BY

three-point bend (TPB) specimen and cracked round _ . .
bar (CRB) specimen cases. Fig. 1 shows the relationship between the hardening

curves for fixed crack lengths and the experimental load
versus displacement curve for growing crack. Assum-
ing the deformation theory of plasticity, the hardening
curve for a crack length; should intercept with the ex-
perimental load versus displacement curve at the point
(vi, B). Also, the load has been represented as a sepa-
rable function of crack length and plastic displacement,
19U and for a given crack length the power-law function has
J=—Z"— , (1) been used for describing the relation between load and
B da |, _const plastic displacement [10-12]. In the present method,
however, the ‘total displacement’ is used as the inde-
whereB is the specimen thicknessis the cracklength,  pendent variable in the power-law function instead of
v is the load-line displacement, atl is the elastic- the ‘plastic displacement’ for convenience in deriving
plastic energy measured as the area under the hardegquations. In fact, the most important point in selecting
ing curve. The experimental load versus displacemente hardening function is the capability of expressing
curve and hardening curves are illustrated in Fig. lthe load versus displacement curve. Especially for most
For a fixed displacement, the difference between the duyctile materials, the fitness of the power-law function
energies for the crack lengtasanda; .1 is given by of the total displacement in expressing the hardening
curve is believed to be almost the same as that based on
—AUi=U; — Ui 1=Ui(1- R), (2)  the plastic displacement component. Considering these
conditions, the hardening curve for a given crack length
where the energiek); andU; 1, are the area under the & may be expressed by
hardening curves fa anda; .1, respectively:

2. Iteration method

2.1. Basic formulation

According to the definition of energy release rate [24],
the J-integral is expressed as

n;
. P(v,a>=n(§) . (5)
Ui :f P(a, v) dv, (3a) !
Ov, In this definition, although no separate function is
Y B defined for the variables of material properties, spec-
Ui +1_/ P@i+1. v) v, (30) imen geometry, or constraint, the lod&l for a given
displacement; is a function of those variables.
andR,; istheratio betweenthe energi€$;=U; . 1/U;. In the materials with high initiation toughness and
If the adjacent data points in the experimental load{ow tearing modulus, the initial linear part of the hard-
displacement curve are spaced close enoughAlbat ening curve can notbe described exactly by a power-law
is small, the partial derivative in Equation 1 is closefunction of total displacement. However, the crack in
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ductile materials usually proceeds with intensive plasthe amount of crack extension can be calculated by use

tic deformation at the crack tip beyond the initial linear of above expressions as long as thentegral formula

elastic deformation. Therefore, the error would be veryis known for the given specimen configuration.

small even though the initial linear part is approximated

by the power-low function such as Equation 5. Practi-

cally, the present method is focus on the relatively duc2.2. Crack growth in the CT and TPB

tile materials revealing round hardening curves; these ~ specimens

materials usually have relatively low initiation tough- For both the CT specimen and the TPB specimen, the

ness and high tearing modulus, such as the test materialsintegral has been evaluated from the total area un-

of this study. der the hardening curve for crack lengthusing the
When the load is represented as a power-law funcy-definition of J [1, 10]:

tion of plastic displacement, it is generally accepted

that the exponent of the power-law function is inde- J = ’7'_U'

pendent of crack length [10-12]. Donoso and Landes Bh

[12] showed that the exponent of hardening curve was, o ; . YT
) i ereb; is the uncracked ligamentW — a;; W is the
obtainable from the Ramberg-Osgood stress-strain p’:'é'pecimlen width) and; is agdimens(:/c\)/nless parameter

rameter, which is independent of crack Ien_gth. HOW'depending on the crack length and specimen configu-
ever, the present method uses the total dlsplacemepétions.

v as a variable in the hardening curve instead of the

(10)

plastic displacement, in previous definitions [10-12]. ni =2 for TPBspecimen (11a)

Changing the function of plastic displacement to the )

function of total displacement, ni =2+40.522x bj/W forCT specimen (11b)
(vp)™ = v™(1—cP/v)", (6)

Note that this the;-definition of J is derived based
wherem is the constant hardening exponent [12] andon the separation of variables in the expression of load,
c is the elastic unloading compliance. Using a leastwhile the Equation 5 is an inseparable function. How-
square fit, the term (£ cP/v)™ can be given as a ever, Equations 11a and 11b are used in this study with-
power-law function ofu: Bv®, whereg is a coefficient out change because it can be shown that an expression
that is independent of. Then, the termi,)™ can be forthen-factoris derived based onthe inseparable func-
represented as tion and the values are almost the same as the values
" s from Equations 11a and 11b. This will be described in
(vp)" =g ", (") detail in a later section.
Using Equations 4 and 10, then the crack extension

One can easily show that the exponsrnihcreases o9 . .
y pons h fromi toi + 1 is obtained as

as the compliance increases (or as the crack lengt
increases). This means that the exponent must be a b;
variable depending on crack growth when the total Ag = a(l_ Ri).
displacement is used as an independent variable in

the hardening function. Although the crack length is
an unknown variable to be determined by iterative
calculations, the displacement on the experimental
load-displacement data may have arelationship with th

(12)

2.3. Crack growth in the CRB specimens
To estimateJ-integral from the load versus displace-
fent curve, we used the expression developed by Rice

crack lengthg;. Thus we can define that= sy + av; etal. [27]:
andng = m+ sy, wheresy anda are constants (the val- 1 vi
ues of these parameter may depend on the specimen J = W(S/o Pdv— Plvi>’ (13)
geometry and material properties). Then the final form !
of the exponeni; is written by wherer is the radius of uncracked ligament. Inserting
Equation 5 into this equatiord; becomes:
Ny =m+ S+ avi =Ng+ avj. 8)
2—n;
When the exponent of the power-law function is de- J = (27”2')Ui- (14)
1

termined, the energy ratiB; can be easily determined

from the load versus displacement data only. Insertingsince the increase in the crack surface is defined by

Equation 5 into Equations 3a and 3b, the energy ratigg p g, — 271; Ar;, Equations 4 and 14 give
is expressed as follows:

o mi+1 P 1vi+1 y \Mett
R_<ni+1+1>< P )(Ui+1> - ©

It is worth noting that all variables for describing 3. Computational procedure and applications
the hardening curves?, vi, andn;, can be obtained 3.1. Computational procedure
from the experimental load versus displacement curvé&ig. 2 shows the procedure of calculating theR
regardless of specimen types and also the vall® i&f  curve. The input data are the experimental load versus
calculated from those variables using Equation 9. Thuslisplacement datd vs.v; data), initial and final crack

i
Arj = 2——ni(l_ R). (15)
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slope in the initial linear region of the experimental
load-displacement curve.

The second step is an iterative calculation to deter-
mine the exponenmt; for each load-displacement point
Calculate n, (vi, P). A trial value fore in Equation 8 is assumed
and the total crack extension is calculated by using the
equations inthe previous section. The criterion in the it-

Input P, v, a,, a;, B, W

Assume an «, and erative calculation is that the calculated crack extension
Calculate n, (=ny + av) [ must be the same as the measured value:
|
| > Aa=(ar— ), (16)

wherel is the number of,-v; data andag andas are,
NO respectively, theinitial and final crack lengths measured
by a visual method. If the total crack extension calcu-
2 (da)=(a-a)? lated can not satisfy this criterion, an alternative value
of « is assumed and crack extension lengths are calcu
YES lated again. This iterative calculation will be continued
v until the result satisfies the criterion.

The third step is to calculate the R curve with the
hardening curves determined in the previous step. Al-
ternatively, since the crack lengths are given foPalb;
data points, thd-R curve can be determined using the
expressions of the ASTM standard method [23].

Calculate R, ZJa,

Calculate J,

Figure 2 Calculation procedure for determinidgR curve.

lengths (or initial and final crack radii), and specimen
dimensions.

The first step in the computation is to determine the3.2. Case descriptions
value ofng from the experimental load-displacement The proposed iteration method was applied to 10 cases
data points in a small displacement range. In Equafor 8 different structural steels as listed in Table |
tion 8, ng is the exponent of the hardening curve at[28-30]. The first 6 cases are for the CT specimens
zero load-line displacement;(= 0). However, since tested under static loading conditions. The cases 7 and
the load-displacement curve at nearly zero displace8 are for the TPB and CRB specimens [28] tested un-
ment is a linear region, thag-value obtained from der static loading conditions. The TPB specimen is a
this initial region is usually close to unity and can Charpy size small specimen. Cases 9 and 10 are for the
not fit the whole hardening curve for the initial crack CT specimens tested under quasi-dynamic loading con-
length. This means that the load-displacement data iditions [30]. All CT specimens are 20% side-grooved.
the linear region should be excluded in the power-lawThe fracture tests have been performed at room tem-
fit. Also, since theng-value is for the initial crack perature or at nuclear reactor operating temperature
length, the regression range should be selected to aé316°C).
sure that crack growth is negligible. In the present For all cases, thd-R curves determined by the it-
calculations, therefore, a displacement range is sesration method were compared with those measured
lected with a condition for plastic displacement; theby the conventional methods. In the quasi-static frac-
no-value is evaluated by a power-law fit of experi- ture testing with the CT and TPB specimens the crack
mental load versus displacement data which satisfyength was measured by the unloading compliance
the condition of O< vp(=vi — P /S) < 0.5vp(Pmax), method [23]. Otherwise, in the quasi-dynamic loading
wherevp(Pmay) is the plastic displacement at maximum tests the crack length was measured by the direct cur-
load Pmax; vp(Pmax) = v(Pmax) — Pmax/ S, andSyisthe  rent potential drop (DCPD) method [23]. For the CRB

TABLE | Summary of case descriptions [28—30]

case Specimen Test temp. Loading condition

no. Material type 1C) (cross-head speed) W(R) B a0(ro) as(ry)

1 SA508 Gr.3 1T-CT RT Quasi-static (1 mm/min) 50.8 25.4 27.2 30.9

2 SA508 Gr.3 1/2T-CT RT Quasi-static (1 mm/min) 25.4 12.7 14.2 17.0

3 SA508 l1a 1T-CT 316 Quasi-static (1 mm/min) 50.8 25.4 30.7 35.8
4 SA508 1a Weld 1T-CT 316 Quasi-static (1 mm/min) 50.8 25.4 30.4 37.3
5 SA312 Type 347 SS 1T-CT 316 Quasi-static (1 mm/min) 50.8 25.4 31.8 36.6
6 SA312 Type 347 SS Weld 1T-CT 316 Quasi-static (1 mm/min) 50.8 25.4 324 38.1
7 SA533B-1 TPB RT Quasi-static (1 mm/min) 10.0 10.0 5.4 7.1

8 HSSI Weld(72 W) CRB 0 Quasi-static (1 mm/min) 16.0 3.2 2.5
9 SA516 Gr.70 1T-CT 316 Quasi-dynamic (1000 mm/min) 50.8 25.4 29.1 38.8
10 SA516 Gr.70 1T-CT 316 Quasi-dynamic (2000 mm/min) 50.8 25.4 29.1 38.6

Note: R=specimen radius of CRB specimep,andrs = initial and final uncracked ligament radii of CRB specimen, respectively.
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specimen, the load-displacement data were read fromr

1600

figure in the reference [28]. In the following sections,

the J-R curves, determined by the proposed method,

1400

are compared with those obtained by the conventional
methods.

4. Results and discussion
4.1. CT and TPB specimen cases under
static loading conditions

Figs 3 to 8 present the statiz R curves from the CT
specimens. Regardless of the test materials, agreemen
are found between the iteration method and the standar¢
unloading compliance method [23]. SordeR curves

1200

1000

600

J-integral, kN/m

400

200

determined by the unloading compliance method reveal
relatively larger data scatters. These seemto have arise 0
from the errors in the crack length measurement by the
unloading compliance method. The iteration method,
however, gives smoother-R curves.
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Figure 3 Comparison ofJ-R curves for the static test of SA508 Gr.3

)
o)

(e}

r o
- @]

[ SA508 Gr.3 steel(1T-CT)
L AtRT

o Iteration method
0 Unloading compliance method

0

1 2 3
Crack extension, mm

steel at room temperature (1T-CT specimen).

1400

1200

1000

J-integral, kN/m

200

0

Figure 4 Comparison of]-R curves for the static test of SA508 Gr.3 Figure 7 Comparison of]-R curves for the static test of SA312 Type

800
600

400

T

°
®0

.

| SA508 Gr.3 steel(1/2T-CT)
| AtRT

o0
ob

O

@ lteration method
o Unloading compliance method

0

1 2

Crack extension, mm

steel at room temperature (1/2T-CT specimen).

Figure 5 Comparison ofl-R curves for the static test of SA508-1a steel
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Figure 6 Comparison ofl-R curves for the static test of SA508-1a steel
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Crack extension, mm Figure 10 Comparison ofJ-R curves for the static test of HSSI weld

) . ) (W72) at room temperature (CRB specimen) [28].
Figure 8 Comparison ofJ-R curves for the static test of SA312 Type

347 stainless steel weld at 316 (1T-CT specimen).

J; and J, are the data from the iteration method. In the
800 calculations ofJexp and J; the experimental load ver-

- SAS533B-1 steel (TPB) sus displacement curve was regarded as the hardening
700 r AtRT curve for all crack lengths [28]. However, when cal-
600 | culating theJ,-values, different hardening curves were
£ X used for different crack lengths. Comparing theurve
> 500 | diﬁo. with the Jexp-values, it is concluded that the iteration
= - method can be applied to the CRB specimens with suf-
g 400 r ficient accuracy.
g 300 i On the other hand, the hardening curves determined
I - o by iterative calculations were used for the calculation
200 L bb of J. Fig. 10 shows that, as the crack extends, the
L &5 @ Iteration method Jo-values become smaller than thsgp- andJ;-values.
100 é 0 Unloading compliance method This result is because the crack growth effect on the
L hardening curve has been ignored in the calculations of
0 ' Jexp and J;. When considering the original definition
0 0.5 1 1.5 2 of J-integral, as given by Equation 1, thke curve is
Crack extension, mm regarded as a more reasonable crack resistance curve.

Figure 9 Comparison ofl-R curves for the static test of SA533B-1 steel
at room temperature (small TPB specimen). 4.3. CT specimen cases under
quasi-dynamic loading conditions

The J-R curves for the TPB specimen are compared™0r the static or quasi-dynamic cases, the DCPD
in Fig. 9. This result also shows an agreement betweef€thod may be applicable to the measurement of
the two methods. Although the amount of crack exten£rack length with sophisticated equipment [23]. In
sion is relatively small in the small TPB specimen; lessFi9S 11 and 12, thd-R curves determined by the it-
than 2 mm, thel-R curve determined by the iteration €ration method are compared with the data points es-

method traces accurately the shapg &R curve from  timated by the DCPD method. For the DCPD method,
the unloading compliance method. the data points at small crack extensions were excluded

from the J-R curves. This was because it was hard
) ] to determine the valid crack growth initiation point on
4.2. CRB specimen case under static the DCPD-time curves. The crack length at ealyR

loading condition curve is strongly dependent on the critical value of the
For the CRB specimens, no standard method for detet;qential drop determined as the crack growth initia-

mining theJ-R curve has been established. Thereforeyjon point. At larger crack extension values, however,

the J-Rcurve has been obtained by the multi-specimeny e wwo methods show an agreement in thintegral
method [28]. In Fig. 10 the-R curve determined by 4 es.

the iteration method is compared with the experimen-

tal data points obtained from four specimens. The load

versus displacement curve used for the present calc#.4. The hardening curves and the

lation was obtained from the case that had revealed the  hardening exponent n

largest crack extension. In Fig. 1Rxp is the experi- Here the calculated hardening curves from the present
mental value from the multi-specimen method [28] anditeration method are compared with the normalized
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load versus plastic displacement curvBg-vp curves)
[7-11]. In the normalization method the lo&dis fre-
quently expressed by the two multiplicative functions;

where the numbex means the amount of crack extension.

oping the calibration function, relating load, displace-
ment, and crack length. They gave a systematical anal-
yses for existing and new function forms, and also
derived simple but accuraté functions for various
specimen types. For CT specimen, G&nction based

on the CFR approach is given by

2.236
Ger= 1.553BW<W> . (19)

Forthe case 5, they-vp curve was obtained from the
experimental load versus plastic displacement curves
using Equation 19, and then the curve was calibrated
to the curves of the crack lengths of 0, 1, 3, and
5mm: NO.0O, N1.0, N3.0, N5.0 curves, respectively.
Also, the hardening curves were obtained for the same
crack lengths by the iteration metho#t0.0, H1.0,
H3.0, H5.0 curves, respectively, in which, for com-
parison with theN-curves, the load was represented
as a function of plastic displacement. The hardening
curves determined by the two methods are compared
in Fig. 13. One can see that except for the small plastic
displacement region of relatively large crack length
cases, both the iteration method and the normalization
method give similar hardening curves. The difference

one is the function of crack length and the other is theP€tween the hardening curves at small displacement re-
function of plastic displacement:

whereG is a geometry-dependent function, wherels

P =G(a)H (vp),

17)

gions seems to have arisen from the differnce in the in-
dependent variables, andv. However, the two meth-
ods produce only a small error in the area difference
between the two adjacent hardening curves, and con-
sequently very similard-R curves will be estimated

is a material-dependent function. For a given specimeRY those methods. Also, it is worth noting that the ini-
geometry, the fracture behavior may be characterize§ia! hardening curve, whose exponentis agrees well
by the normalized loady defined by [7-12]

P

Py = — = H(vp). (18)

G

with the experimental load-plastic displacement curve
at small plastic displacements. In Fig. 13, an arrow in-
dicates the upper limit of the displacement range in the
regression to obtain the value mf; 0.5vp(Pmax)-

Table Il contains the calculated exponents of hard-

Recently, Donoso and Landes [11, 12] proposed &ning curves as the functions of displacemgniThe
Common Format Equation [CFE] approach for devel-n-value increases with displacement at the slope.of
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TABLE Il The exponent of hardening curver)(as the functions of  j5 crack |ength dependent, as in Equa_tion 8, the load

displacement can not be expressed as separate functions of crack

Case no. Specimen type N = No+ vy length and displacement. In order to find the effect of
the inseparability of variables on the valuepive tried

1 1T-CT n; = 0.15+ 0.002y; to derive then-factor with the hardening exponent de-

g i/TZZTCT n = 8331 g-gg;gi pending on the crack length. Using Equations 3a and 5,

- nj =0. X i . .

4 1T.CT n —0.151 0,018y the J-integral, Equation 1, becomes

5 1T-CT N = 0.18+4-0.02;

6 1T-CT ni = 0.15+ 0.001; 1| 1 aC 1 \on

7 TPB n; = 0.18+4 0.002; J=—c|=——| + (Invi — —)— Ui,

8 CRB ni = 0.18+4 0.61y B|Cioal, 1+ni/oal,

9 1T-CT n; = 0.15+ 0.058; (20)

10 1T-CT ni =0.16+0.07y;

n-factor for crack lengtfa; should be

1 an
ing curve as the displacementincreases. This results C 9a +Di | Invi — 1+n/oal |’ (21)
from the fact that the load is defined as a function of the "
total displacement, as in Equation 5. As a special casgyhere the values of derivatives may be obtained with
the load may be separated into the functions @nd  he finite difference forms:
awhena =0. If the load is separable, the shape of the

where Cj = P, /v". This equation implies that the
Thisa-value represents the shape change of the harden- |:bi oC
ni=—

Vi

hardening curve is independent of the crack growth, as oC Ci+1—G
in the definition of hardening curve based on the plastic = =53 5 (22a)
: doal, a+1—&
displacement [10]. !
Furthermore, as presented in Table II, the exponents anl Niga—N (22b)
for CT and TPB specimens reveal a relatively weak de- dal, a@y1—a

pendency on the displacement. Whereas the exponent

of CRB specimen reveals relatively strong dependency For the cases of CT and TPB specimen cases, the
on the displacement; a large valuesgf0.61, was ob-  values ofy; were calculated using both the expressions
tained for this specimen. This result seems to resulfn Equations 11 and 21 and the results are compared
from the different loading modes between the speciin Table IlI. It is found that both the expressions give
mens; the bending mode is dominant in the CT andhimost the same values. Therefore, we can conclude
TPB specimens, otherwise the tensile mode is domithat the use of the inseparable function does not violate
nantin the CRB specimen. This implies that the tensilehe basis of the-definition ofJ, and consequently both
mode of load produces a highesvalue. the expressions, Equations 11 and 21, can be used for
calculating the value of.

4.5. The n-factor with the function

of total displacement 5. Summary and conclusion
It has been known that the separation of variables ig\n iteration method has been developed for determin-
required to derive the-definition of J [1, 10]. How-  ing the J-R curve from the load versus load-line dis-
ever, since the present approach is based on the defdacement record only. The iteration method and appli-
nition that the exponent of power-law hardening curvecation results are summarized as follows:

TABLE |1l Comparison of-values at representative crack length to width ratios
Case Specimen Loading condition na by np by Ratio
no. type (cross-head speed) ap/W a/W Equation 11 Equation 21 nk/na)
1 1T-CT Quasi-static 0.535 0.537 2.242 2.244 1.001
(12 mm/min) 0.561 2.229 2.230 1.000
0.580 2.219 2.219 1.000
3 1T-CT Quasi-static 0.604 0.609 2.204 2.227 1.011
(2 mm/min) 0.641 2.187 2.190 1.001
0.701 2.156 2.155 1.000
5 1T-CT Quasi-static 0.628 0.629 2.194 2.288 1.043
(2 mm/min) 0.665 2.175 2.165 0.995
0.730 2.141 2.114 0.987
7 TPB Quasi-static 0.538 0.539 2.000 1.996 0.998
(12 mm/min) 0.622 2.000 2.049 1.025
0.707 2.000 1.991 0.996
9 1T-CT Quasi-dynamic 0.573 0.587 2.216 2.271 1.025
(2000 mm/min) 0.666 2.174 2.180 1.003
0.758 2.126 2.092 0.984
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(1) Inthe iteration method, the hardening curve is de- 9.

scribed by a power-law function, in which the exponent

is given as a linear function of load-line displacement.1%-

For each crack length, the hardening curve is deter;;
mined by iterative calculation method. The iterative

calculation is continued until the total amount of crack12.
extension becomes equal to the measured crack exteb3.

sion. Finally, theJ-integral values are calculated from

the hardening curves and crack lengths are determined

in the iterative calculation step.

(2) The method developed was successfully applieds.

to the staticJ-R tests using CT, TPB, and CRB spec-
imens and to the quasi-dynamicR tests using CT
specimens. The iteration method can be regarded as an
alternate method that can be applied to any specimen
types and to any loading rates.
(3) The calculated hardening curves were compared
with the calibrated curves obtained by use of a nor-
malization method. The two methods gave very similar, 5
curves. It was also shown that the valueg ef/aluated

based on the inseparable function for load were almosis.

the same as the values from the conventional expression
for n which is drawn from a separable function. 20
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