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An iteration method for directly determining

J-Resistance curves of nuclear structural steels
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An iteration method has been developed for determining crack growth and fracture
resistance curves (J-R curves) of nuclear structural steels from the load versus load-line
displacement record only. In this method, the hardening curve, the load versus
displacement curve at a given crack length, is assumed to be a power-law function, where
the exponent varies with the crack length. The exponent is determined by an iterative
calculation method with the assumption that the exponent varies linearly with the load-line
displacement. The proposed method was applied to the static J-R tests using compact
tension (CT) specimens, a three-point bend (TPB) specimen, and a cracked round bar (CRB)
specimen as well as it was applied to the quasi-dynamic J-R tests using CT specimens. The
J-R curves determined by the proposed method were compared with those obtained by the
conventional testing methodologies. The results showed that the J-R curves could be
determined directly by the proposed iteration method with sufficient accuracy in the
specimens from SA508 and SA516 pressure vessel steels and their welds and SA312
stainless steel. C© 1999 Kluwer Academic Publishers

1. Introduction
Since theJ-integral has been regarded as the most im-
portant parameter for characterizing the elastic-plastic
fracture resistance of structural materials, significant
efforts have been devoted to develop more simplified
methodologies of determiningJ-integral versus crack
extension curve (J-R curve) [1–21]. In theJ-R frac-
ture testing the crack length measurement is the most
cumbersome procedure and needs a high degree of ac-
curacy to obtain a correctJ-R curve. The most suc-
cessful experimental methods using a single specimen
are the elastic unloading compliance method and poten-
tial drop method [22, 23]. In static fracture testing they
are now used routinely in many laboratories. However,
the unloading compliance method can not be applied to
the dynamic loading conditions because the unloading-
reloading cycles to obtain the elastic compliance need a
quasi-static loading condition. Also, the potential drop
method requires much sophisticated equipment such
as a high current power supplier and a high-speed data
acquisition system, and there is a difficulty in determin-
ing the crack growth initiation point in dynamic fracture
testing.

To eliminate these limitations in the experimental
measurement of crack length, several direct methods
have been attempted to obtain theJ-R curve from
the load versus displacement record only without ad-
ditional equipment. The most important approaches
are the key curve method [2–5], normalization method
[6–15], and load ratio method [16–18]. The key curve
method is based on the assumption that the load is

independent of the crack growth history and can be
defined by a definite function of load line displacement
and crack length. The crack length can be expressed as
a functional of the key curve function, its partial deriva-
tives, and load-displacement data. For a given material,
a unique ‘key curve’ is assumed to exist, and the curve
function is obtained by multi-specimen testing or com-
puter calculation [2].

The normalization method was developed based on
the similar concept of the key curve method. However,
this method uses individual normalized curves for each
test itself rather than using a universal key curve for the
given material. One important point of this method is
that the separation of variables, crack length and dis-
placement, is applied to the expression for load. Thus
the normalized load is given as a function of displace-
ment only. The power-law function [10–12] or three
parameter function [13–15], so-called LMN function,
has been frequently used as the normalization function
form.

In the load ratio method, a reference hardening curve
(a load versus displacement curve without crack exten-
sion) is needed to obtain the amount of crack exten-
sion [16–18]. It is assumed that at a given total dis-
placement the same plastic displacement is assumed for
the reference-hardening curve and experimental load
versus displacement curve. Then the elastic unloading
compliance is determined for each curve, and therefore
the crack length can be calculated using the relation-
ship between the elastic unloading compliance and the
crack length.
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In the previous direct methods, the final result de-
pends on how to determine the required curves; such
as the key curve, normalization function, reference-
hardening curve. To obtain more accurate curves, many
modified methods have been suggested and success-
fully applied to various materials [3, 14, 15, 17, 18].
We tried to develop an alternate direct method for deter-
mining J-Rcurves from load versus displacement data.
This paper presents the new direct method (we call it
‘iteration method’) which can be applied to various
types of specimen and to any loading rate. For a given
crack length, the hardening curve is expressed by a
power-law function of total displacement. Changing the
constants in the power-law function approximates the
variation of hardening curve with the crack growth. The
exponent of the hardening curve is expressed as a linear
function of displacement and is determined by iterative
calculations. The other constants are directly obtained
from the experimental load versus displacement data.
As a result, the iteration method can be applied to any
specimen type as long as theJ-integral is formulated
for the specimen. For each case, the amounts of crack
growth between data points are calculated based on the
calculated power-law hardening curves, and then the
J-R curve is determined. This paper includes the ap-
plication results for CT specimen cases including static
tests and quasi-dynamic tests and the results for the
three-point bend (TPB) specimen and cracked round
bar (CRB) specimen cases.

2. Iteration method
2.1. Basic formulation
According to the definition of energy release rate [24],
the J-integral is expressed as

J=− 1

B

∂U

∂a

∣∣∣∣
v= const

, (1)

whereB is the specimen thickness,a is the crack length,
v is the load-line displacement, andU is the elastic-
plastic energy measured as the area under the harden-
ing curve. The experimental load versus displacement
curve and hardening curves are illustrated in Fig. 1.
For a fixed displacementvi , the difference between the
energies for the crack lengthsai andai+1 is given by

−1Ui =Ui −Ui + 1=Ui (1− Ri ), (2)

where the energies,Ui andUi+1, are the area under the
hardening curves forai andai+1, respectively:

Ui =
∫ vi

0
P(ai , v) dv, (3a)

Ui + 1=
∫ vi

0
P(ai + 1, v) dv, (3b)

andRi is the ratio between the energies;Ri =Ui + 1/Ui .
If the adjacent data points in the experimental load-
displacement curve are spaced close enough that1ai

is small, the partial derivative in Equation 1 is close

Figure 1 Schematic of experimental load versus displacement curve and
hardening curves.

to 1Ui /1ai . Then the amount of crack extension,
1ai (=ai + 1−ai ), is approximated by

1ai = Ui (1− Ri )

B Ji
. (4)

Fig. 1 shows the relationship between the hardening
curves for fixed crack lengths and the experimental load
versus displacement curve for growing crack. Assum-
ing the deformation theory of plasticity, the hardening
curve for a crack lengthai should intercept with the ex-
perimental load versus displacement curve at the point
(vi , Pi ). Also, the load has been represented as a sepa-
rable function of crack length and plastic displacement,
and for a given crack length the power-law function has
been used for describing the relation between load and
plastic displacement [10–12]. In the present method,
however, the ‘total displacement’ is used as the inde-
pendent variable in the power-law function instead of
the ‘plastic displacement’ for convenience in deriving
equations. In fact, the most important point in selecting
the hardening function is the capability of expressing
the load versus displacement curve. Especially for most
ductile materials, the fitness of the power-law function
of the total displacement in expressing the hardening
curve is believed to be almost the same as that based on
the plastic displacement component. Considering these
conditions, the hardening curve for a given crack length
ai may be expressed by

P(v,ai )= Pi

(
v

vi

)ni

. (5)

In this definition, although no separate function is
defined for the variables of material properties, spec-
imen geometry, or constraint, the loadPi for a given
displacementvi is a function of those variables.

In the materials with high initiation toughness and
low tearing modulus, the initial linear part of the hard-
ening curve can not be described exactly by a power-law
function of total displacement. However, the crack in
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ductile materials usually proceeds with intensive plas-
tic deformation at the crack tip beyond the initial linear
elastic deformation. Therefore, the error would be very
small even though the initial linear part is approximated
by the power-low function such as Equation 5. Practi-
cally, the present method is focus on the relatively duc-
tile materials revealing round hardening curves; these
materials usually have relatively low initiation tough-
ness and high tearing modulus, such as the test materials
of this study.

When the load is represented as a power-law func-
tion of plastic displacement, it is generally accepted
that the exponent of the power-law function is inde-
pendent of crack length [10–12]. Donoso and Landes
[12] showed that the exponent of hardening curve was
obtainable from the Ramberg-Osgood stress-strain pa-
rameter, which is independent of crack length. How-
ever, the present method uses the total displacement
v as a variable in the hardening curve instead of the
plastic displacementvp in previous definitions [10–12].
Changing the function of plastic displacement to the
function of total displacement,

(vp)m = vm(1−cP/v)m, (6)

wherem is the constant hardening exponent [12] and
c is the elastic unloading compliance. Using a least
square fit, the term (1− cP/v)m can be given as a
power-law function ofv: βvs, whereβ is a coefficient
that is independent ofv. Then, the term (vp)m can be
represented as

(vp)m=βvm+ s. (7)

One can easily show that the exponents increases
as the compliancec increases (or as the crack length
increases). This means that the exponent must be a
variable depending on crack growth when the total
displacement is used as an independent variable in
the hardening function. Although the crack length is
an unknown variable to be determined by iterative
calculations, the displacementvi on the experimental
load-displacement data may have a relationship with the
crack lengthai . Thus we can define thatsi = s0+αvi

andn0=m+ s0, wheres0 andα are constants (the val-
ues of these parameter may depend on the specimen
geometry and material properties). Then the final form
of the exponentni is written by

ni =m+ s0+αvi = n0+αvi . (8)

When the exponent of the power-law function is de-
termined, the energy ratioRi can be easily determined
from the load versus displacement data only. Inserting
Equation 5 into Equations 3a and 3b, the energy ratio
is expressed as follows:

Ri =
(

ni + 1

ni + 1+ 1

)(
Pi + 1vi + 1

Pi vi

)(
vi

vi + 1

)ni + 1+ 1

. (9)

It is worth noting that all variables for describing
the hardening curves,Pi , vi , andni , can be obtained
from the experimental load versus displacement curve
regardless of specimen types and also the value ofRi is
calculated from those variables using Equation 9. Thus

the amount of crack extension can be calculated by use
of above expressions as long as theJ-integral formula
is known for the given specimen configuration.

2.2. Crack growth in the CT and TPB
specimens

For both the CT specimen and the TPB specimen, the
J-integral has been evaluated from the total area un-
der the hardening curve for crack lengthai using the
η-definition of J [1, 10]:

Ji = ηi Ui

Bbi
, (10)

wherebi is the uncracked ligament (=W−ai ; W is the
specimen width) andηi is a dimensionless parameter
depending on the crack length and specimen configu-
rations:

ηi = 2 for TPB specimen, (11a)

ηi = 2+ 0.522× bi /W for CT specimen. (11b)

Note that this theη-definition of J is derived based
on the separation of variables in the expression of load,
while the Equation 5 is an inseparable function. How-
ever, Equations 11a and 11b are used in this study with-
out change because it can be shown that an expression
for theη-factor is derived based on the inseparable func-
tion and the values are almost the same as the values
from Equations 11a and 11b. This will be described in
detail in a later section.

Using Equations 4 and 10, then the crack extension
from i to i + 1 is obtained as

1ai = bi

ηi
(1− Ri ). (12)

2.3. Crack growth in the CRB specimens
To estimateJ-integral from the load versus displace-
ment curve, we used the expression developed by Rice
et al. [27]:

Ji = 1

2πr 2
i

(
3
∫ vi

0
P dv− Pi vi

)
, (13)

wherer is the radius of uncracked ligament. Inserting
Equation 5 into this equation,Ji becomes:

Ji = (2− ni )

2πr 2
i

Ui . (14)

Since the increase in the crack surface is defined by
B1ai = 2πri1ri , Equations 4 and 14 give

1ri = ri

2− ni
(1− Ri ). (15)

3. Computational procedure and applications
3.1. Computational procedure
Fig. 2 shows the procedure of calculating theJ-R
curve. The input data are the experimental load versus
displacement data (Pi vs.vi data), initial and final crack
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Figure 2 Calculation procedure for determiningJ-R curve.

lengths (or initial and final crack radii), and specimen
dimensions.

The first step in the computation is to determine the
value ofn0 from the experimental load-displacement
data points in a small displacement range. In Equa-
tion 8, n0 is the exponent of the hardening curve at
zero load-line displacement (vi = 0). However, since
the load-displacement curve at nearly zero displace-
ment is a linear region, then0-value obtained from
this initial region is usually close to unity and can
not fit the whole hardening curve for the initial crack
length. This means that the load-displacement data in
the linear region should be excluded in the power-law
fit. Also, since then0-value is for the initial crack
length, the regression range should be selected to as-
sure that crack growth is negligible. In the present
calculations, therefore, a displacement range is se-
lected with a condition for plastic displacement; the
n0-value is evaluated by a power-law fit of experi-
mental load versus displacement data which satisfy
the condition of 0<vp(= vi − Pi /S0)< 0.5vp(Pmax),
wherevp(Pmax) is the plastic displacement at maximum
loadPmax; vp(Pmax)= v(Pmax)− Pmax/S0, andS0 is the

TABLE I Summary of case descriptions [28–30]

case Specimen Test temp. Loading condition
no. Material type (◦C) (cross-head speed) W(R) B a0(r0) af (r f )

1 SA508 Gr.3 1T-CT RT Quasi-static (1 mm/min) 50.8 25.4 27.2 30.9
2 SA508 Gr.3 1/2T-CT RT Quasi-static (1 mm/min) 25.4 12.7 14.2 17.0
3 SA508 1a 1T-CT 316 Quasi-static (1 mm/min) 50.8 25.4 30.7 35.8
4 SA508 1a Weld 1T-CT 316 Quasi-static (1 mm/min) 50.8 25.4 30.4 37.3
5 SA312 Type 347 SS 1T-CT 316 Quasi-static (1 mm/min) 50.8 25.4 31.8 36.6
6 SA312 Type 347 SS Weld 1T-CT 316 Quasi-static (1 mm/min) 50.8 25.4 32.4 38.1
7 SA533B-1 TPB RT Quasi-static (1 mm/min) 10.0 10.0 5.4 7.1
8 HSSI Weld(72 W) CRB 0 Quasi-static (1 mm/min) 16.0 3.2 2.5
9 SA516 Gr.70 1T-CT 316 Quasi-dynamic (1000 mm/min) 50.8 25.4 29.1 38.8
10 SA516 Gr.70 1T-CT 316 Quasi-dynamic (2000 mm/min) 50.8 25.4 29.1 38.6

Note: R= specimen radius of CRB specimen,r0 andr f = initial and final uncracked ligament radii of CRB specimen, respectively.

slope in the initial linear region of the experimental
load-displacement curve.

The second step is an iterative calculation to deter-
mine the exponentni for each load-displacement point
(vi , Pi ). A trial value forα in Equation 8 is assumed
and the total crack extension is calculated by using the
equations in the previous section. The criterion in the it-
erative calculation is that the calculated crack extension
must be the same as the measured value:

I∑
i = 1

1ai = (af −a0), (16)

whereI is the number ofPi -vi data anda0 andaf are,
respectively, the initial and final crack lengths measured
by a visual method. If the total crack extension calcu-
lated can not satisfy this criterion, an alternative value
of α is assumed and crack extension lengths are calcu-
lated again. This iterative calculation will be continued
until the result satisfies the criterion.

The third step is to calculate theJ-R curve with the
hardening curves determined in the previous step. Al-
ternatively, since the crack lengths are given for allPi -vi

data points, theJ-R curve can be determined using the
expressions of the ASTM standard method [23].

3.2. Case descriptions
The proposed iteration method was applied to 10 cases
for 8 different structural steels as listed in Table I
[28–30]. The first 6 cases are for the CT specimens
tested under static loading conditions. The cases 7 and
8 are for the TPB and CRB specimens [28] tested un-
der static loading conditions. The TPB specimen is a
Charpy size small specimen. Cases 9 and 10 are for the
CT specimens tested under quasi-dynamic loading con-
ditions [30]. All CT specimens are 20% side-grooved.
The fracture tests have been performed at room tem-
perature or at nuclear reactor operating temperature
(316◦C).

For all cases, theJ-R curves determined by the it-
eration method were compared with those measured
by the conventional methods. In the quasi-static frac-
ture testing with the CT and TPB specimens the crack
length was measured by the unloading compliance
method [23]. Otherwise, in the quasi-dynamic loading
tests the crack length was measured by the direct cur-
rent potential drop (DCPD) method [23]. For the CRB
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specimen, the load-displacement data were read from
figure in the reference [28]. In the following sections,
the J-R curves, determined by the proposed method,
are compared with those obtained by the conventional
methods.

4. Results and discussion
4.1. CT and TPB specimen cases under

static loading conditions
Figs 3 to 8 present the staticJ-R curves from the CT
specimens. Regardless of the test materials, agreements
are found between the iteration method and the standard
unloading compliance method [23]. SomeJ-R curves
determined by the unloading compliance method reveal
relatively larger data scatters. These seem to have arisen
from the errors in the crack length measurement by the
unloading compliance method. The iteration method,
however, gives smootherJ-R curves.

Figure 3 Comparison ofJ-R curves for the static test of SA508 Gr.3
steel at room temperature (1T-CT specimen).

Figure 4 Comparison ofJ-R curves for the static test of SA508 Gr.3
steel at room temperature (1/2T-CT specimen).

Figure 5 Comparison ofJ-Rcurves for the static test of SA508-1a steel
at 316◦C (1T-CT specimen).

Figure 6 Comparison ofJ-Rcurves for the static test of SA508-1a steel
weld at 316◦C (1T-CT specimen).

Figure 7 Comparison ofJ-R curves for the static test of SA312 Type
347 stainless steel at 316◦C (1T-CT specimen).
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Figure 8 Comparison ofJ-R curves for the static test of SA312 Type
347 stainless steel weld at 316◦C (1T-CT specimen).

Figure 9 Comparison ofJ-Rcurves for the static test of SA533B-1 steel
at room temperature (small TPB specimen).

The J-R curves for the TPB specimen are compared
in Fig. 9. This result also shows an agreement between
the two methods. Although the amount of crack exten-
sion is relatively small in the small TPB specimen; less
than 2 mm, theJ-R curve determined by the iteration
method traces accurately the shape ofJ-R curve from
the unloading compliance method.

4.2. CRB specimen case under static
loading condition

For the CRB specimens, no standard method for deter-
mining theJ-R curve has been established. Therefore,
theJ-Rcurve has been obtained by the multi-specimen
method [28]. In Fig. 10 theJ-R curve determined by
the iteration method is compared with the experimen-
tal data points obtained from four specimens. The load
versus displacement curve used for the present calcu-
lation was obtained from the case that had revealed the
largest crack extension. In Fig. 10JEXP is the experi-
mental value from the multi-specimen method [28] and

Figure 10 Comparison ofJ-R curves for the static test of HSSI weld
(W72) at room temperature (CRB specimen) [28].

J1 andJ2 are the data from the iteration method. In the
calculations ofJEXP andJ1 the experimental load ver-
sus displacement curve was regarded as the hardening
curve for all crack lengths [28]. However, when cal-
culating theJ2-values, different hardening curves were
used for different crack lengths. Comparing theJ1 curve
with the JEXP-values, it is concluded that the iteration
method can be applied to the CRB specimens with suf-
ficient accuracy.

On the other hand, the hardening curves determined
by iterative calculations were used for the calculation
of J2. Fig. 10 shows that, as the crack extends, the
J2-values become smaller than theJEXP- andJ1-values.
This result is because the crack growth effect on the
hardening curve has been ignored in the calculations of
JEXP and J1. When considering the original definition
of J-integral, as given by Equation 1, theJ2 curve is
regarded as a more reasonable crack resistance curve.

4.3. CT specimen cases under
quasi-dynamic loading conditions

For the static or quasi-dynamic cases, the DCPD
method may be applicable to the measurement of
crack length with sophisticated equipment [23]. In
Figs 11 and 12, theJ-R curves determined by the it-
eration method are compared with the data points es-
timated by the DCPD method. For the DCPD method,
the data points at small crack extensions were excluded
from the J-R curves. This was because it was hard
to determine the valid crack growth initiation point on
the DCPD-time curves. The crack length at earlyJ-R
curve is strongly dependent on the critical value of the
potential drop determined as the crack growth initia-
tion point. At larger crack extension values, however,
the two methods show an agreement in theJ-integral
values.

4.4. The hardening curves and the
hardening exponent n

Here the calculated hardening curves from the present
iteration method are compared with the normalized
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Figure 11 Comparison ofJ-R curves for the quasi-dynamic test of
SA516 Gr.70 steel at 316◦C (1T-CT specimen, load-line displacement
rate: 1000 mm/min).

Figure 12 Comparison ofJ-R curves for the quasi-dynamic test of
SA516 Gr.70 steel at 316◦C (1T-CT specimen, load-line displacement
rate: 2000 mm/min).

load versus plastic displacement curves (PN-vp curves)
[7–11]. In the normalization method the loadP is fre-
quently expressed by the two multiplicative functions;
one is the function of crack length and the other is the
function of plastic displacement:

P=G(a)H (vp), (17)

whereG is a geometry-dependent function, whereasH
is a material-dependent function. For a given specimen
geometry, the fracture behavior may be characterized
by the normalized loadPN defined by [7–12]

PN= P

G
= H (vp). (18)

Recently, Donoso and Landes [11, 12] proposed a
Common Format Equation [CFE] approach for devel-

Figure 13 Comparison of the hardening curves obtained by the normal-
ization method,N x, and those obtained by the iteration method,Hx,
where the numberx means the amount of crack extension.

oping the calibration function, relating load, displace-
ment, and crack length. They gave a systematical anal-
yses for existing and newG function forms, and also
derived simple but accurateG functions for various
specimen types. For CT specimen, theG function based
on the CFR approach is given by

GCT= 1.553BW

(
b

W

)2.236

. (19)

For the case 5, thePN-vp curve was obtained from the
experimental load versus plastic displacement curves
using Equation 19, and then the curve was calibrated
to the curves of the crack lengths of 0, 1, 3, and
5 mm: N0.0, N1.0, N3.0, N5.0 curves, respectively.
Also, the hardening curves were obtained for the same
crack lengths by the iteration method:H0.0, H1.0,
H3.0, H5.0 curves, respectively, in which, for com-
parison with theN-curves, the load was represented
as a function of plastic displacement. The hardening
curves determined by the two methods are compared
in Fig. 13. One can see that except for the small plastic
displacement region of relatively large crack length
cases, both the iteration method and the normalization
method give similar hardening curves. The difference
between the hardening curves at small displacement re-
gions seems to have arisen from the differnce in the in-
dependent variables;vp andv. However, the two meth-
ods produce only a small error in the area difference
between the two adjacent hardening curves, and con-
sequently very similarJ-R curves will be estimated
by those methods. Also, it is worth noting that the ini-
tial hardening curve, whose exponent isn0, agrees well
with the experimental load-plastic displacement curve
at small plastic displacements. In Fig. 13, an arrow in-
dicates the upper limit of the displacement range in the
regression to obtain the value ofn0; 0.5vp(Pmax).

Table II contains the calculated exponents of hard-
ening curves as the functions of displacementvi . The
n-value increases with displacement at the slope ofα.
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TABLE I I The exponent of hardening curves (n) as the functions of
displacement

Case no. Specimen type ni = n0+αvi

1 1T-CT ni = 0.15+ 0.002vi

2 1/2T-CT ni = 0.14+ 0.0022vi

3 1T-CT ni = 0.24+ 0.0025vi

4 1T-CT ni = 0.15+ 0.018vi

5 1T-CT ni = 0.18+ 0.02vi

6 1T-CT ni = 0.15+ 0.001vi

7 TPB ni = 0.18+ 0.002vi

8 CRB ni = 0.18+ 0.61vi

9 1T-CT ni = 0.15+ 0.058vi

10 1T-CT ni = 0.16+ 0.07vi

Thisα-value represents the shape change of the harden-
ing curve as the displacementvi increases. This results
from the fact that the load is defined as a function of the
total displacement, as in Equation 5. As a special case,
the load may be separated into the functions ofv and
a whenα= 0. If the load is separable, the shape of the
hardening curve is independent of the crack growth, as
in the definition of hardening curve based on the plastic
displacement [10].

Furthermore, as presented in Table II, the exponents
for CT and TPB specimens reveal a relatively weak de-
pendency on the displacement. Whereas the exponent
of CRB specimen reveals relatively strong dependency
on the displacement; a large value ofα, 0.61, was ob-
tained for this specimen. This result seems to result
from the different loading modes between the speci-
mens; the bending mode is dominant in the CT and
TPB specimens, otherwise the tensile mode is domi-
nant in the CRB specimen. This implies that the tensile
mode of load produces a higherα-value.

4.5. The η-factor with the function
of total displacement

It has been known that the separation of variables is
required to derive theη-definition of J [1, 10]. How-
ever, since the present approach is based on the defi-
nition that the exponent of power-law hardening curve

TABLE I I I Comparison ofη-values at representative crack length to width ratios

Case Specimen Loading condition ηa by ηb by Ratio
no. type (cross-head speed) a0/W a/W Equation 11 Equation 21 (ηb/ηa)

1 1T-CT Quasi-static 0.535 0.537 2.242 2.244 1.001
(1 mm/min) 0.561 2.229 2.230 1.000

0.580 2.219 2.219 1.000
3 1T-CT Quasi-static 0.604 0.609 2.204 2.227 1.011

(1 mm/min) 0.641 2.187 2.190 1.001
0.701 2.156 2.155 1.000

5 1T-CT Quasi-static 0.628 0.629 2.194 2.288 1.043
(1 mm/min) 0.665 2.175 2.165 0.995

0.730 2.141 2.114 0.987
7 TPB Quasi-static 0.538 0.539 2.000 1.996 0.998

(1 mm/min) 0.622 2.000 2.049 1.025
0.707 2.000 1.991 0.996

9 1T-CT Quasi-dynamic 0.573 0.587 2.216 2.271 1.025
(1000 mm/min) 0.666 2.174 2.180 1.003

0.758 2.126 2.092 0.984

is crack length dependent, as in Equation 8, the load
can not be expressed as separate functions of crack
length and displacement. In order to find the effect of
the inseparability of variables on the value ofη, we tried
to derive theη-factor with the hardening exponent de-
pending on the crack length. Using Equations 3a and 5,
the J-integral, Equation 1, becomes

Ji =− 1

B

[
1

Ci

∂C

∂a

∣∣∣∣
vi

+
(

lnvi − 1

1+ ni

)
∂n

∂a

∣∣∣∣
vi

]
Ui ,

(20)

where Ci = Pi /v
ni

i . This equation implies that the
η-factor for crack lengthai should be

ηi =−
[

bi

Ci

∂C

∂a

∣∣∣∣
vi

+ bi

(
lnvi − 1

1+ ni

)
∂n

∂a

∣∣∣∣
vi

]
, (21)

where the values of derivatives may be obtained with
the finite difference forms:

∂C

∂a

∣∣∣∣
vi

= Ci + 1−Ci

ai + 1−ai
, (22a)

∂n

∂a

∣∣∣∣
vi

= ni + 1− ni

ai + 1−ai
. (22b)

For the cases of CT and TPB specimen cases, the
values ofηi were calculated using both the expressions
in Equations 11 and 21 and the results are compared
in Table III. It is found that both the expressions give
almost the same values. Therefore, we can conclude
that the use of the inseparable function does not violate
the basis of theη-definition ofJ, and consequently both
the expressions, Equations 11 and 21, can be used for
calculating the value ofη.

5. Summary and conclusion
An iteration method has been developed for determin-
ing the J-R curve from the load versus load-line dis-
placement record only. The iteration method and appli-
cation results are summarized as follows:
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(1) In the iteration method, the hardening curve is de-
scribed by a power-law function, in which the exponent
is given as a linear function of load-line displacement.
For each crack length, the hardening curve is deter-
mined by iterative calculation method. The iterative
calculation is continued until the total amount of crack
extension becomes equal to the measured crack exten-
sion. Finally, theJ-integral values are calculated from
the hardening curves and crack lengths are determined
in the iterative calculation step.
(2) The method developed was successfully applied

to the staticJ-R tests using CT, TPB, and CRB spec-
imens and to the quasi-dynamicJ-R tests using CT
specimens. The iteration method can be regarded as an
alternate method that can be applied to any specimen
types and to any loading rates.
(3) The calculated hardening curves were compared

with the calibrated curves obtained by use of a nor-
malization method. The two methods gave very similar
curves. It was also shown that the values ofη evaluated
based on the inseparable function for load were almost
the same as the values from the conventional expression
for η which is drawn from a separable function.
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